
Gradient Library Calibration

NCMC

Recommended practices for gradient combi techniques...

Michael Fasolka, Amit Sehgal, Kathryn Beers

NCMC-1: April 26, 2002

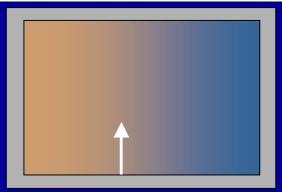
Calibration

Calibration of Library Variable Space

Thickness, Composition, Surface Energy, etc.

Instrumentation Calibration

Temperature stage, Translation Stages


Resolution, Tolerance and Uncertainty of Measurements

Design

Why is Library Calibration Necessary?

The Cartoon Gradient

Linear gradient

- one slope
- even along "y"

Known dimension and orientation

Known scope

Defect Free

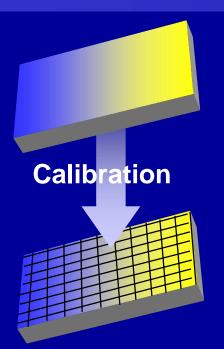
Reality

NCMC

Non-linear gradient

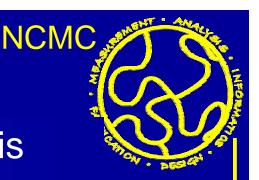
Variable slopes in x and y

Arbitrary orientation


Scope approximate

Defects Present

Library Calibration:


What is needed before a gradient library is useful for combinatorial research?

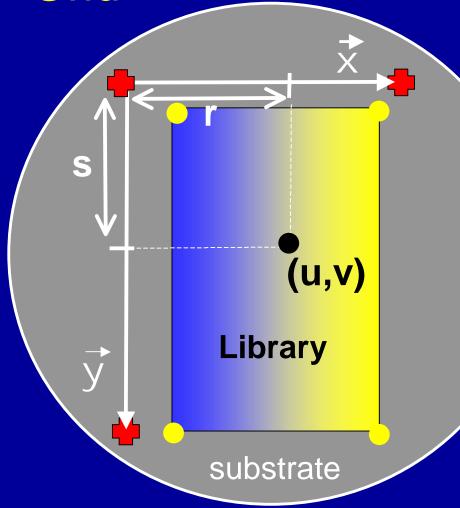
- Spatial reference grid
 - Mesh of calibration measurements
- Flaw/defect criteria met
- Library scope overlaps known phenomenon
 - "Built-in" standard
- Scope and tolerance of library known
 - Evaluation of uncertainty

Practices for processing combi gradient libraries so they can be "handled" like discrete combi libraries

Spatial Reference Grids (SRG):

Define the sample space with respect to a reference or "fiduciary" marking system

NCMC


Spatial Reference Grids Enable:

- Organization/Automation of sample measurements
- Definition of non-linear gradients (almost all!).
- Alignment/Registry of multiple gradients
- Definition and measurement of gradient steepness
- Interpolation: "zooming in", "isobars"
- Library transfer (e.g. to another substrate)

Elements of a Spatial Reference

Grid

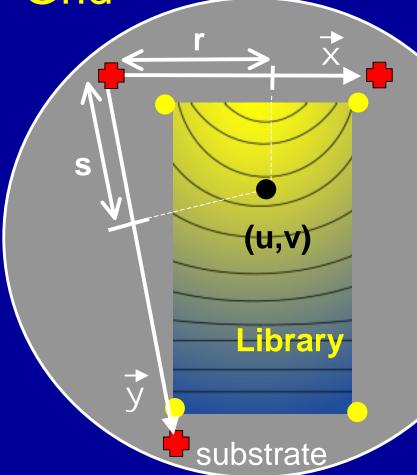
3-Point Fiduciary Mark System -

Reference Vectors x & y

NCMC

Coordinate System

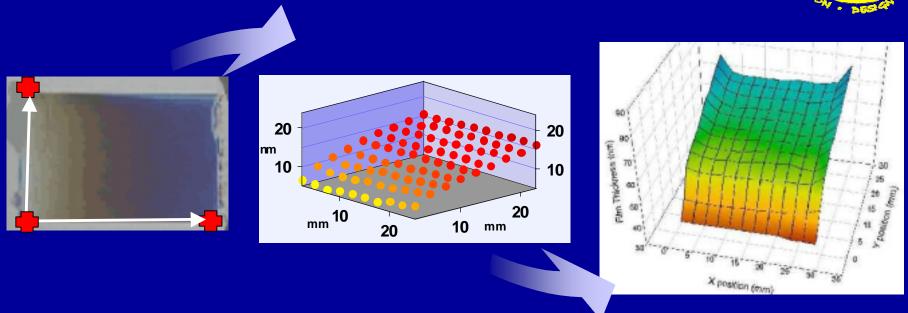
$$(u,v) = \left(r \frac{\overrightarrow{x}}{|\overrightarrow{x}|}, s \frac{\overrightarrow{y}}{|\overrightarrow{y}|}\right)$$


Library boundaries odefined in terms of (u,v)

NCMC

Elements of a Spatial Reference

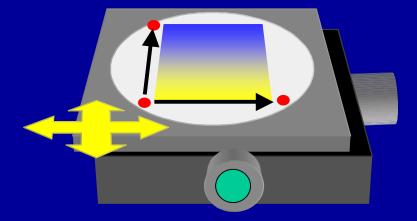
Grid


- Reference vector analysis accommodates non-orthogonal fiduciary systems
- The SRG defines the points onto which a mesh of calibration measurements are built.
 This mesh defines the library variable space.

Library boundaries
Fiduciary Marks

Gradient Film Thickness Library

- Thickness calibration mesh is built from point measurements over SRG
- Interpolation allows thickness to be determined anywhere in the library


SRG Pointers:

- Use xy-stages to define reference vectors
 - let calibrated stages work for you

Program automation tools to work within reference system

 Alignment with reference system should always be the first step of automated analysis

Notes on Fiduciary Marks:

- Fiduciary marks may be within library borders
 - allows for easy library transfer
- Factors to consider when choosing fiduciary marks:
 - Permanence
 - Readily identified/recognized?
 - Size
 - Calibration measurement technique (ellipsometry? OM?)

Mask Alignment Marks

Lithographic Features

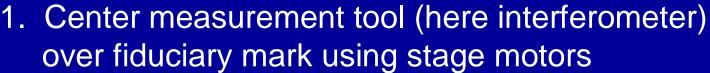
Substrate Flaws

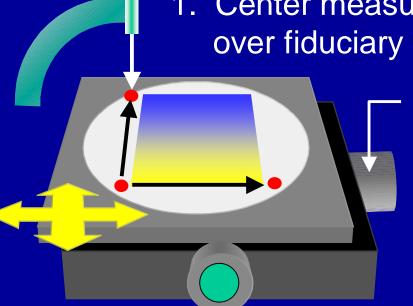
Wafer Flat

Scribe Marks

Library Corners

Library Flaws

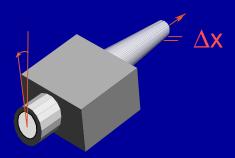

(e.g. dust particles)

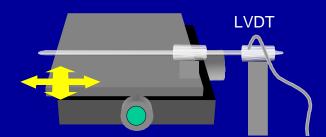


xy-stages and the SRG:

Translation stages with encoded stepper motors provide a convenient means of SRG definition

- 2. Record motor positions
- 3. Repeat for each mark
- 4. Define reference vectors
- 5. Take calibration measurements on grid defined by reference vectors

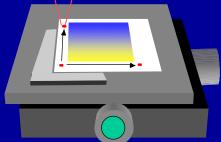

NCMC


SRG and Sources of Error

- Motor step size
- 2. Stage following error
- 3. Sample Alignment
- 4. Fiduciary Mark Registration

Solutions:

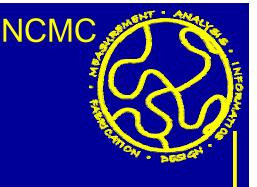
1.Motor step size:
Should be < 5% of
measurement footprint

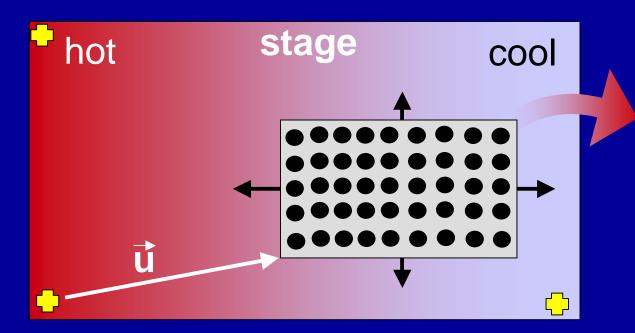


- 2. Stage following Error:- Tune motors properly
 - External fixed encoders to accurately determine position



4. Reticule /
Cross-Hairs
are good for
finding
fiduciaries

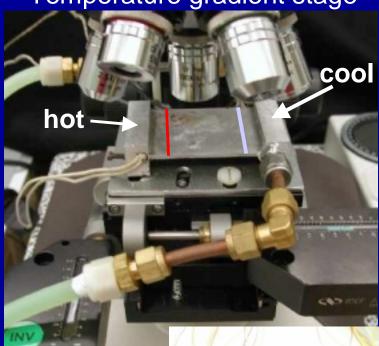


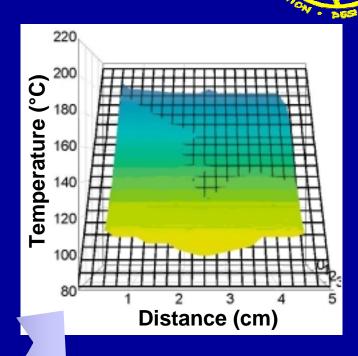

3. Sample Alignment:
Jig/Slot for
reproducible
sample placement

Calibrating Temperature Gradients

Moveable array of T-couples mounted on application substrate (e.g. silicon wafer)

- Thermocouple positions mapped first
- Array position (u) recorded w.r.t. stage fiduciary marks -
- Temperature recorded for each T-couple vs. **u**

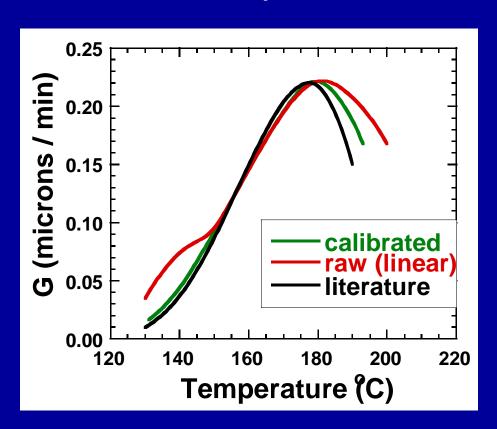

Fine mesh of temperature measurements FAST

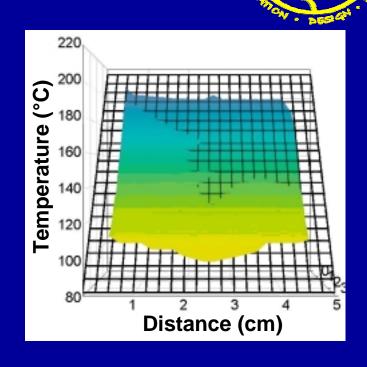


NCMC.

Calibrating Temperature Gradients

Temperature gradient stage


Temperature Stage Calibration Surface



Calibrating Temperature Gradients

Calibration Pays Off

NCMC.

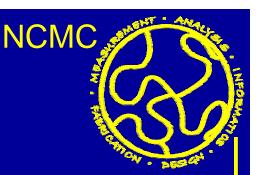
Combi i-PS spherulite growth rate (G) data

Temperature Gradients

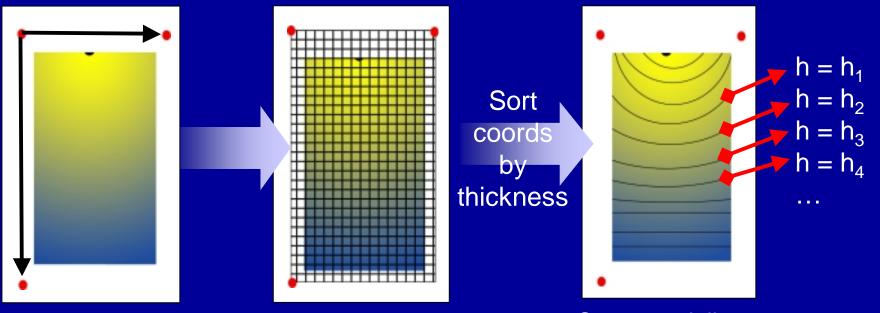
(R. Davis, J. Gilman: BFRL)

Flammability test of extruded plastics

- Pre-load calibration of radiation panel:
 - using flux gauges on sample stage


Flame travel guides-

Flux gauge (thermocouple) mounts



Iso-parametric Contour Lines:

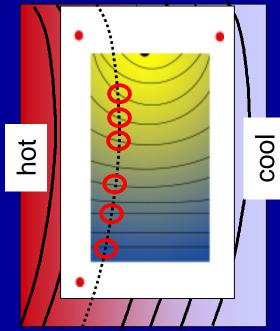
NCMC S

Non-linear spatial distribution → Linear parameter space

Non-linear thickness gradient

Thickness measurements on SRG

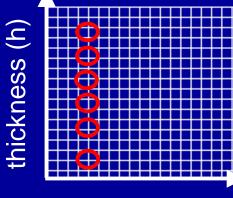
Contours delineate coordinates with equal thickness

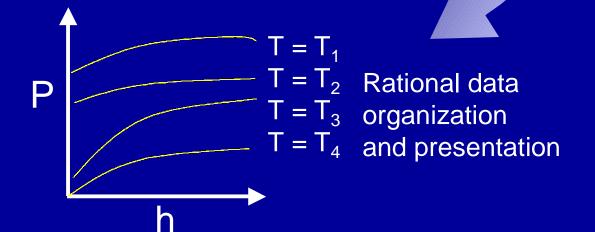


Iso-parametric Contour Lines:

Deconvolution of crossed non-linear gradients

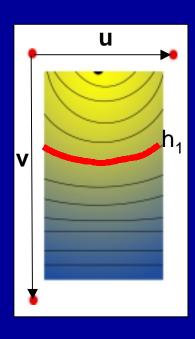
Contour line

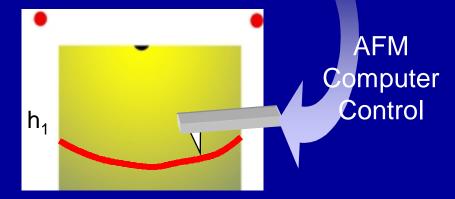

intersections


Similarly calibrated gradient hot stage

Linear Parameter Space

NCMC


Temperature (T)


Utility of Contour Lines:

Problem: Thickness "h₁" is of particular interest. How can we concentrate further analysis on this thickness?

Solution:

- Generate iso-h contours using SRG and calibration mesh
- 2) Use h₁ contour line to generate coordinates (u,v) for which the thickness equals h₁
- 3) Use h₁ coordinates as input for automation and informatics

NCMC

- Practically all gradient libraries will have defects:
 - E.g. Dust, Scratches
- Problem: Does defect density negate library?
- Solution: Perform a random sampling within library to estimate defect density *before* other characterization steps.

Process:

- 1. Perform N (10-15) measurements at random places in the library (e.g. micrographs with area A).
- Count total number of defects: N_D
- 3. Defect density $\approx N_D/N \cdot A$

Library rejection criteria:

Defect Density > 1/A_{CF}

A_{CF}= Characterization method footprint area

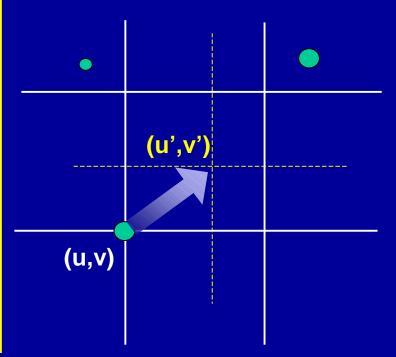
Example: Is my polymer film clean enough?

- Pick N =10 random points across polymer film library
- Collect optical micrographs with dimension 200 X 500 μm
 - A=100000 μ m²
- Count defects in each micrograph:
 - e.g. total $N_D = 1000$
- Defect Density ≈ 0.001/μm²
 - 1 defect/1000 μ m²
- Consider Characterization method footprint area
 - e.g. 50 X 50 μm AFM scans: A_{CF} = 2500 μm²

Defect Density > 1/A_{CF}?

YES: 0.001 > 0.0004 (we expect 2.5 defects/scan)

Conclusion: NOT clean enough, reject library



Saving Time

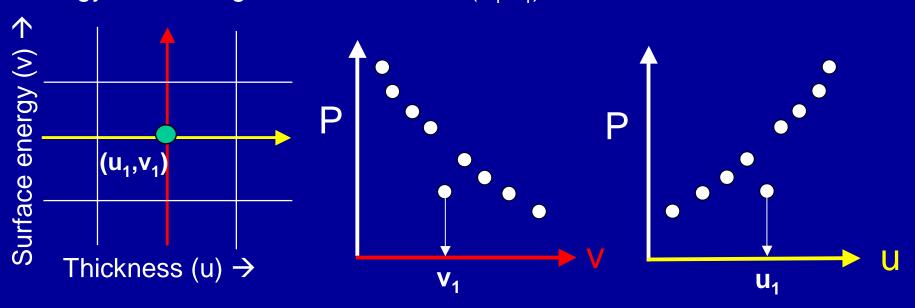
Proper library calibration helps minimize effect of sparse or clustered defects:

Mesh of calibration measurements on spatial reference grid allows for interpolation, which in turn allow for defects to be "skipped over"

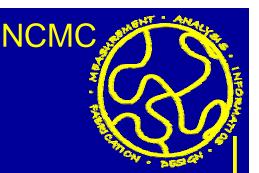
Problem: While taking AFM measurements across SRG, a defect is noticed at point (u,v).

Solution: Take measurement at nearby (u',v').

Interpolate library properties at (u',v') using calibration measurements on surrounding points.



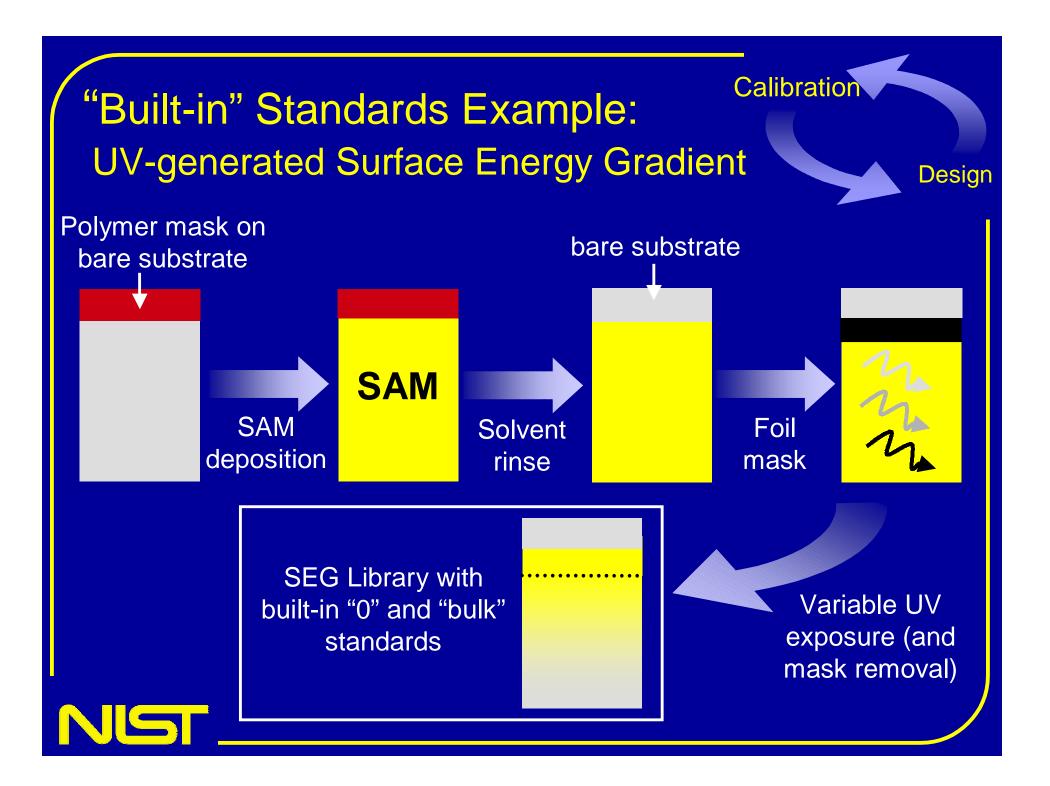
= defects


Proper library calibration illuminates "outliers": *Automatic statistical defect rejection!*

Problem: Automated measurement of property **P** over surface energy/thickness grid with a defect at (u_1,v_1) .

Solution: Spurious points in P vs. v and P vs. u plots gives *twofold indication* of defect position. This point should be discarded!

Facilitating library calibration through "Built-in" Standards:



Design library scope to overlap with "known" reference points

Gradient	Built in Standard
Thickness	Bare Substrate "0" or region of "bulk" sample
Composition	100% of one component "Known" composition
Surface Energy	Unmodified substrate Unexposed SAM "Fully Exposed" SAM

Built in Standards "travel" with library through further processing

Library Transfer

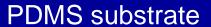

Problem: Combi experiment requires mounting library on a substrate that is not amenable to film casting.

- Copper Grid
- Flexible PDMS

Solution:

- 1) Cast film on appropriate substrate.
- 2) Establish spatial reference grid within the library borders
- 3) Transfer library (e.g. float)

Reference "travels" with library


Design

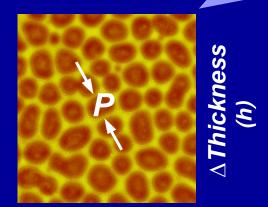
Cast on silicon wafer or glass

Copper Grid

NCMC

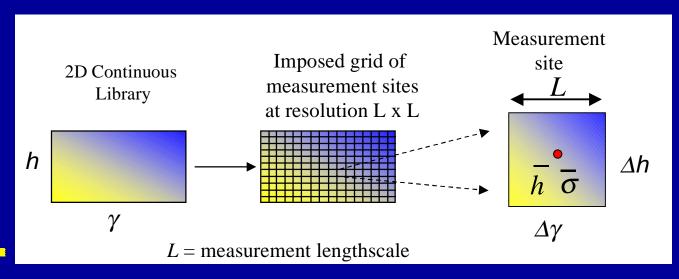
Resolution, Uncertainty, Tolerance

- How many characterization measurements should be made over a library?
 - SRG spacing or "resolution"
 - Characterization technique footprint
 - Gradient steepness
- What will be the error of my characterization measurements?
 - Local Gradient
 - Characterization technique footprint


Calibration

Design

Resolution, Uncertainty, Tolerance


Example: Phase Separated Blend Morphology

- $P = \text{phase domain width: } P = f(\gamma, h)$
- Continuous gradients cause variance in observed property P

Lateral resolution (L) affects variance

 Δ Surface Energy (γ)

NCMC

Uncertainty: Gradients & Resolution

Standard uncertainty propagation Carson Meredith

$$\Delta < P > = (\partial < P > / \partial N) \Delta N + (\partial < P > / \partial h) \Delta h + (\partial < P > / \partial \sigma) \Delta \sigma$$

An optimization problem:

- *L* ~ Measurement footprint dimension microscopy: Optical, AFM, Fluor., FTIR spectroscopy: IR, UV
 - 'ΔThickness' and 'ΔSurface Energy' are minimized with $\downarrow L$
 - N ~ Number of microstructural features to be measured over footprint

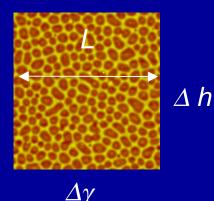
 $N \sim L^2$ (Area of micrograph) statistics better as L1

NCMC

Uncertainty/Library Optimization

$$\triangle < P > = (\partial < P > / \partial N) \triangle N + (\partial < P > / \partial h) \triangle h + (\partial < P > / \partial \sigma) \triangle \sigma$$

An Iterative Process:


Step 1 - Define Footprint Size (L):

Good Statistics: N ~100

Estimate: Max. domain size $(P) \sim 6 \mu m$

 $L \sim \sqrt{N \times P} \sim 60 \, \mu \text{m}$

 $(\partial <P >/\partial N) \Delta N \sim <P >.(\Delta N/N) \sim 0.01 < P >$

Step 2 - Initial estimate of Acceptable Gradients

Conservative: Thickness $\Delta h = 0.1 \text{ nm}$

Surface energy $\Delta \gamma = 0.1$ mJ m⁻²

For a 3 cm \times 3 cm area Library:

$$\Sigma \Delta h = 50 \text{ nm}$$
 $\Sigma \Delta \gamma = 50 \text{ mJ m}^{-2}$ (Library scope)

Step 3 - Create Library with Acceptable gradients

$$\Sigma \Delta h < 50 nm$$

$$\Sigma \Delta h < 50 \text{ nm}$$
 $\Sigma \Delta \gamma < 50 \text{ mJ m}^{-2}$

e.g.
$$\Delta h = 0.06 \text{ nm}$$
 $\Delta \gamma = 0.06 \text{ mJ m}^{-2}$

$$\Delta \gamma = 0.06 \text{ mJ m}^{-2}$$

Uncertainty/Library Optimization

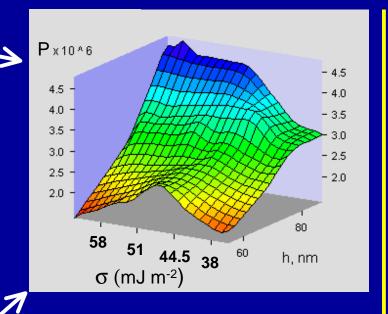
Calibration

Design

Step 4 - Go to Library: Measure Max Slopes in Data

$$(\partial < P > /\partial \gamma)_{max} = 0.2 \mu m/(mJ m^{-2})$$

$$(\partial < P > / \partial h)_{max} = 0.1 \mu m/(nm)$$


Step 5 – Estimate Max Error ($\triangle < P >$)

=
$$(\partial /\partial N) \Delta N + (\partial /\partial h) \Delta h$$

+
$$(\partial < P > / \partial \sigma) \Delta \gamma$$

$$= 0.01 < P > + 0.1 \times 0.06 + 0.2 \times 0.06$$

$$\Delta < P > = 0.01 < P > \mu m + 0.018 \mu m$$

For <P>=1.5 microns (smallest measured domain) → 2.2% error

Step 6 – Adjust Gradients to meet apriori criteria keeping the same L

e.g $\triangle < P > < 1\%$ Design Input, go to step 2

NCMC S

A combinatorial database from gradient libraries

- Screen libraries to reduce contributions from flawed data points
 - Use developing knowledge to optimize fabrication methods on successive iterations
- Create the appropriate spatial reference grids to discretize subregions of the library
 - Use developing knowledge to optimize variable space and measurement ranges on *successive iterations*
- Validate libraries with "built in" standards
 - Use discrete samples and existing knowledge (literature) to begin in new areas
- Use scope and tolerance to validate measurements and determine uncertainty
 - feedback from *each cycle* can simultaneously facilitate automation and reduce uncertainty

